

INTELLIGENT AGENTS FOR SCHEDULING SPACE COMMUNICATIONS
Pete Bonasso, Debra Schreckenghost

TRACLabs, Inc., 1012 Hercules, Houston,. TX 77058
bonasso@traclabs.com, schreck@traclabs.com

ABSTRACT

The evolving Deep Space Network (DSN) scheduling
architecture will need a radically new user interface
paradigm that must allow DSN missions to both
unequivocally specify their requests and integrate them
with those of other users in increasingly crowded
bandwidths. We have designed and prototyped mission
software agents that interface with the existing DSN
scheduling engine (DSE). These agents use models of
mission preferences for scheduling requests, conflict
resolution and notifications, and take actions on the part
of the user to resolve schedule conflicts or take
advantage of unexpected asset availability. This paper
describes the design an initial prototype of that system.

1. MOTIVATIONS

Recent planning for human exploration to the Moon and
beyond as well as maintaining vibrant space and Earth
science programs resulted in a new concept for the
communications architecture. Though an important
hallmark of the future architecture will be advanced
resource optimization software to manage the
oversubscribed communications assets, equally
important will be a radically new user interface
paradigm to that software that must allow space
communications missions to both unequivocally specify
their requests and also iteratively get those requests
integrated with those of other users in increasingly
crowded bandwidths. It is this last aspect of the
interfaces – ability to interactively collaborate with
other users and the resource scheduling software -- that
will ensure a successful communications support
architecture. What makes the development of such an
interface a significant challenge is that in the new
regime, mission operations staff (hereafter called user
scheduling representatives, or user reps) will be given
direct control of the schedules of communications
assets, allowing them to directly change the request
(e.g., antenna resources and timeframes) while working
with other user reps to solve scheduling conflicts in a
collegial environment [1]. Such an interface must be
able to:

1) Assist user reps in generating clearly
specified communications requests and
tracking their status before, during and
after each mission

2) Interface with resource scheduling engines
and private workspaces of schedules and
asset configurations so the user rep may

examine alternative requests in what-if
scenarios

3) Take action on the part of the user rep for
routine schedule management as allowed
by the mission preferences

4) Intelligently support peer-to-peer
interaction with other user reps to resolve
scheduling conflicts

We believe such an interface cannot be developed easily
with conventional means, but instead is best designed
using intelligent agent technologies, resulting in an
intelligent space communications scheduling agent for
each user scheduling representative. Such an intelligent
agency is the Distributed Collaboration and Interaction
(DCI) system [2], developed by TRACLabs for other
NASA projects, which employs liaison agents for each
user, designed to interact with both other liaison agents
as well as with intelligent software such as automated
planners and schedulers. Therefore, to meet the
scheduling needs described above we:

1. Designed and developed DCI scheduling
agents to interface with existing space
communications scheduling engines using
a local working database of active
schedule possibilities

2. Extended the existing DCI capabilities to
model user preferences for
communications requests, conflict
resolution and notification of schedule
changes

3. Allowed the user reps to vary the
autonomy of the scheduling agent

4. Extended the existing DCI agency to
accommodate planful interactions for peer-
to-peer resolution of schedule conflicts

In this project we worked with Deep Space Network
(DSN) user schedule representatives to identify
benchmark scenarios and use cases, and from those
scenarios and from knowledge of the evolving design of
the DSN Service Scheduling Software (S3) architecture
we derived command and information requirements to
support user scheduling reps in their schedule
management activities. From these efforts we
determined that the DCI system could support the
development of resource requests, the interaction with a
scheduling engine for investigating mission alternatives,
and the solving of schedule conflicts, first by having the

Proc. ‘IJCAI–09 Workshop on Artificial Intelligence in Space’, Pasadena, California, US
17–18 July 2009 (ESA SP-673, September 2009)

requests modified based on user rep preferences and
later, by peer-to-peer conflict resolution techniques.

This paper describes the design of DCI for DSN
scheduling that meets the requirements of the
developing S3 architecture as exemplified in the
scenarios and use cases. Further, we describe a
software demonstration that showed DCI supporting
user reps by monitoring the master schedule for asset
and schedule changes, responding to these changes by
automatically taking action on the part of the user rep,
based on user-allowable actions, and providing a facility
for the user reps to launch a pathfinder scheduling
engine graphical user interface (GUI) for S3 [3] to
display the results of the actions.

2. SCENARIO DEVELOPMENT

The scheduling scenarios take place at least eight weeks
before the first mission sequencing (uploading
command sequences to the spacecraft). This allowed us
to investigate more user options, since those options
will be more limited once the sequencing has begun.
The scenarios and use cases to investigate how the DCI
services can benefit the user reps are:

1) A single user scenario wherein a user rep prepares a
request for execution. Use cases are:
a) User rep prepares a request and the supporting

DCI agent runs the auto-repair functions for
resolving conflicts and for resolving violations

b) After the master schedule is run, previously
published requests are violated; the S3 software
sends the violated requests to the DCI agent,
which automatically suggests and runs request
changes to produce a problem-free schedule

c) An asset becomes available and the S3 software
sends the new information to the DCI Agent,
which automatically revokes relaxations on
previous requests, successfully schedules them
into and presents the results to the user rep

2) A multi-user scenario, wherein the master schedule
is run and violations occur that need at least two
user reps to modify their requests for a resolution:
the DCI agents of the affected user reps establish
information exchange channels to allow the
affected user reps to view each other’s request and
a common presentation of the relevant portion of
the affected schedule

Figure 1 Detailed view of DCI in the S3 framework. In addition to the services described in the text, the
displays from both DCI, such as the notice viewer at the bottom of the picture, and the DSE-client schedule
viewer at the top will be available.

3. CONTROL & INFORMATION (C&I)
REQUIREMENTS AND DESIGNING THE
DCI FRAMEWORK

The current Service Scheduling Software (S3)
architecture and DCI’s integration with it is shown in
Figure 1. On one side of a firewall is the service
scheduling software application. S3 services are made
available to DSN user reps through a web interface,
including access to the schedule and asset databases.
User reps use private workspaces to develop requests
and test them with the scheduling software before

publishing them to the master schedule.

With this design, instead of having to help another
group of schedulers understand their requests and then
check the resulting schedule, the user reps will be able
to directly change the requests in the schedule for their
mission. Also available will be various web services
supporting group collaboration, with such technologies
as instant messaging and chat. And of course the user
reps are linked via email and phone as well.

Each user rep will have a software agent running locally
24/7 and integrated with the S3 applications. The agent
would manage notifications and the exercise of the
scheduling software. These mission agents would be
designed from our DCI system. Additionally we see a
need for a Schedule Coordinator Service to monitor for
and report schedule changes and track and asset
changes, and to serve as a timekeeper for user rep
negotiations to solve critical schedule problems.

Each DCI agent is essentially a collection of services
tailored for the supported user working in the target
application domain. Figure 1 shows our selection of
DCI services and the flow of information and
commands derived from the scenario use cases.

There will be one agent for each user scheduling
representative. On each user rep’s display there is a tool
bar from which one launches the graphical interfaces
supporting various actions the user rep might take.
Underneath the hood is the suite of services provided by
each DCI agent. DCI can tailor the number and types of

services for different applications. For the DSN
application we’ve selected services for providing a user
interface to the agent, user location tracking,
notification, user state management and a DSE service
that mediates user interaction with the DSN scheduling
engine.

The state management service (SMS) uses a blackboard
memory model to maintain a consistent picture of the
user state, and to maintain information on mission
requests and service configurations, as well as the list of
user-allowed actions that can be taken by the DSE
service.

The location service (LS) keeps track of the online
status and availability of the user rep and her backup.

Figure 2 The DSN Scheduling Engine (DSE) Service.

The notification service (NS) uses pattern matching to
filter and annotate incoming notices by comparing a set
of rules associated with the user’s role to incoming
notices. The annotation identifies how much latency
can be tolerated in notifying the user and whether the
user’s attention should be shifted to the notice.

The user interface service (UIS) manages the
presentation of information obtained from the other
services. It provides user interaction with notices,
including launching context sensitive displays of data
associated with a notice, such as the schedule resulting
from a new request. It can also support paging, email
and viewing information common to two or more users,
such as schedules resulting from multi-user
negotiations. The UIS maintains a persistent model of
the information obtained from the other services that is
independent from the manner of displaying that
information. This allows us to easily accommodate

web-based displays of information from the agent in the
S3 framework.

The DSE service is the main innovation we’ve
developed for the DSN application (Figure 2). It
executes actions on the part of the user and interacts
directly with the S3 scheduling engine (SE). This service
uses a reactive planning engine to take planful actions
on the part of the user, based on user-allowed actions
maintained in the SMS. These reactive plans are stored
and managed by the RAPs system that TRACLabs has
used over the years in support of robotic and process
control applications [4]. Plans include those for
managing requests, repairing schedule problems,
monitoring and responding on the part of the user rep to
asset and track changes, and maintaining the status of a
given user’s participation in multi-user conflict
negotiations.

Figure 3 Toolbars and Notice viewers for the Voyager and Messenger missions. Each would actually be running on the
desktop of the individual schedule managers, but we have consolidated them here for the demonstration. At the beginning
of the scenario, both agents have previous messages that have yet to be reviewed, covering such things as the online status
of other schedule managers, previous track changes and coordination information for change proposals. Some of the
messages also have launch buttons for bringing up the DSE-client to view information related to the notice. The tabs at
the top of the notice viewer group the notices according to category or discussion threads.

The DSE service also monitors communications from
the schedule coordination service (SCS) and can send
commands and receive information from the S3
software.

All of the DSE service plans are variably autonomous.
That is, they can be tagged with annotations specified
by the user as to whether to run automatically or under
user control. Variable autonomy permits the user to
gradually automate scheduling functions performed by
the agent as he or she gain insight and trust in agent
behaviours with use.

4. DEMONSTRATION

We developed a first-order software prototype of the
above-described DCI system, involving two agents, one
for the Voyager 1 mission and one for the Mercury
mission, Messenger, situated in a mid-term planning
horizon. There were two main parts to the
demonstration. In the first, the schedule coordinator
service (SCS) broadcast a change in the availability of a
70-meter antenna. While both agents received the

update, the change significantly affected a Voyager
request. So that agent responded by first attempting to
resolve the scheduling problems, and failing that,
replaced a previous request with a fallback for that
schedule week.

In the second part of the demonstration, the SCS
broadcast a message that some of the time on the same
antenna is restored, and the Voyager agent successfully
restored the original request to the schedule. Details of
the demonstration follow.

4.1 Part One
A screenshot of the agent toolbars and their notice
viewers at the beginning of the demonstration is shown
in Figure 3.

Figure 4 Launching of the DSE-client to Show Messenger’s Track Changes.

The 70-meter antenna at Canberra, DSS-43, must have
some critical maintenance performed on it during
schedule week 37. This asset change is broadcast by the
SCS, received by both Voyager and Messenger agents,
and both agents post notices of the asset change. But
the Voyager agent’s DSE service sees from its list of
week 37 requests that it had previous requirements that
used DSS-43 for that week. Based on a list of actions
that the Voyager user rep allows the agent to take, the
Voyager DSE Service first runs the DSE to prepare an
initial schedule layout with the new DSS-43
maintenance requirement for week 37. (The DSE
Service commands the scheduling engine and receives
feedback on the results via a DSE-client script runner
developed for this demonstration by Dr. Mark Johnston
of JPL.) The initial layout results in conflicts and
violations, so again, based on the list of user allowed
actions, the DSE Service runs the DSE repair strategies
for conflicts and violations.

At this point in the demonstration, the SCS sends out
information about track changes that have resulted from
the change in status of DSS-43. Each agent receives

these changes, but only Messenger has tracks in the list.
So the Messenger agent posts track change notices that
include a button to launch the DSE-client to view those
track changes (see Figure 4).

After applying the normal repair strategies, there are
still 2 conflicts in the Voyager schedule. The DSE
service posts notices to that effect. From its request
database in the SMS, the Voyager DSE Service knows
the intent of the requirement causing the conflict as well
as the allowed requirement reduction strategies, or
fallbacks, for the Voyager 1 mission. Fallback
strategies are not the minimums specified in normal
requests, but are allowed by the mission in special
circumstances. From these it determines that the
requirement in conflict can be reduced for one day in
this schedule week. So it prepares a new request and
invokes the script runner to replace the original
requirement with the new one. It also updates its
request database with a link showing that fallback
replaced the original request.

Figure 5 The schedule manager clicks on the launch buttons for notices resulting from applying the fallback
request to view the conflict schedule and the fallback schedule side by side.

Monitoring the results from the script runner, the DSE
Service determines a problem-free schedule has been
achieved and posts notices accordingly. The schedule
manager views the notices, and from the notice buttons,
launches the DSE-client for first the 2-conflict schedule,
and then the schedule resulting from the fallback,
viewing them side-by-side (Figure 5).

4.2 Part two
In the second part of the demonstration, the SCS sends
an asset change event indicating that the maintenance
requirement for DSS-43 for week 37 has been reduced
from 36 hours to 11 hours. Both the Voyager and
Messenger agents post notices for their missions. Both
DSE services search their request databases for requests
with requirements in week 37 that use DSS-43.

The Voyager DSE Service locates the original request
that was superseded by a fallback because of the loss of

70-meter antenna availability. So, based on its list of
user allowed actions, the Voyager DSE Service executes
a plan to delete the fallback request and add back the
lost requirement. The results from the script runner are
successful after the initial schedule layout (Figure 6).
As a last step, the DSE service removes the link
between the fallback and the original requests, and once
more makes the original request active in the SMS.

4.3 Demonstrated Capability
The demonstration showed how our software agent
framework could significantly facilitate schedule
management. First of all, the software demonstrated a
number of functions of a DCI agent useful to the DSN
missions. It showed that the DCI agent maintains
user/mission status information, in particular the
online/offline status of the user. It also showed how the
DCI agent provides notices filtered and tailored to the
supported mission, in particular, notices related to track

Figure 6 A successful schedule results from restoring the original request. A new notice appears to that affect, and
the user rep launches the DSE-client from the launch button to view the new schedule. The user rep uses the diff
button to see the restored track

changes, asset and schedule changes, and change
proposals.

The demonstration also showed how the agent state
management service (SMS) can be extended to maintain
mission and request status in order to support the action
plans used by the DSE service.

As well, the software demonstrated several instances of
launching S3 application software, that is, the DSE-
client, to display schedule information. This included
schedules with conflicts, “diff’d” schedules to show
track changes, and schedules from agent-modified
requests, such as fallbacks and restored requests.

Most of the action took place within the DSE service of
each DCI agent. This service monitored track, asset
and schedule changes coming from the SCS, selecting
only those relevant to the supported mission. It
accessed locally stored schedule and request
information to support required actions, and took action
on the part of the mission to recover from an
unanticipated loss of asset availability by first
attempting repairs and then implementing a fallback
strategy. Finally, it took action on behalf of the user rep
to restore a modified request when the asset became
available.

The SCS served as a focal point for generating events
that might require action on the part of the user reps.
By monitoring the master schedule data and sending
change events, this service can preclude the user having
to constantly pull information from the other side of the
firewall. While we only demonstrated the messaging
capability of the SCS, we plan to develop the complete
functional design of the SCS in a follow on effort.

5. CONCLUSIONS & FUTURE WORK

This research showed that there indeed are a number of
ways in which intelligent agent software can greatly aid
the scheduling activities of the user scheduling
representatives. In particular the agents can:

• Monitor around the clock for changes in assets
and schedules

• Detect and notify user reps of relevant schedule
events, including asset availability, request
conflicts and changes that reflect unexpected
opportunities to add or restore requirements for
a given mission

• Execute the SE software in the background on
the user’s behalf by applying routine repair
strategies, applying fallback strategies
particular to the mission, and generating new
requests that take advantage of new scheduling
opportunities

• Though not completely demonstrated in the
prototype, our discussions with JPL user reps

indicated that DCI agents can aid in the multi-
user negotiation process by posting
coordination notices to affected user reps and
by generating schedules from the proposed
changes

Our prototype agent software demonstrated some part of
every aspect of the above capabilities, and it did so by
reusing our existing agent framework and by developing
a new service – the DSES – tailored specifically to
support DSN scheduling. Thus, it appears feasible to
develop and deploy a comprehensive agent system to
support the DSN user reps using DCI.

In a follow-on effort we propose to more fully develop
the capabilities of the DCI agents for a selected set of
JPL DSN user reps and to define a path for deploying
DCI or similar agent capabilities in the future S3
architecture. Additionally, we will investigate how
useful agent technologies can be for the space (SN) and
ground (GN) networks.

6. ACKNOWLEDGEMENTS

This work was supported by NASA SBIR grant
NNX09CC16P. Dr Mark Johnston of JPL was
instrumental in providing mechanisms for DCI to
interface with the current S3 system.

7. REFERENCES

1. Clement, B.J. and M.D. Johnston, Design of a Deep
Space Network Scheduling Application, in
IWPSS 2006. October, 2006: Baltimore, MD.

2. Martin, C.E., et al. An Environment for Distributed
Collaboration Among Humans and Software
Agents. in 2nd International Conference on
Autonomous Agents and Multi-Agent Systems.
2003. Melbourne, Australia.

3. Johnston, M.D., et al., Request Driven Scheduling for
NASA's Deep Space Network, in IWPSS09.
2009: Pasadena, CA.

4. Firby, J.R., The RAPS Language Manual. 1999,
Neodesic, Inc.: Chicago.

